Shrinking Dimer Dynamics and Its Applications to Saddle Point Search

نویسندگان

  • Jingyan Zhang
  • Qiang Du
چکیده

Saddle point search on an energy surface has broad applications in fields like materials science, physics, chemistry, and biology. In this paper, we present the shrinking dimer dynamics (SDD), a dynamic system which can be applied to locate a transition state on an energy surface corresponding to an index-1 saddle point where the Hessian has a negative eigenvalue. By searching for the saddle point and the associated unstable direction simultaneously in a single dynamic system defined in an extended space, we show that unstable index-1 saddle points of the energy become linearly stable steady equilibria of the SDD which makes the SDD a robust approach for the computation of saddle points. The time discretization of the SDD is connected to various iterative algorithms, including the popular dimer method used in many practical applications. Our study of these discretization schemes lays a rigorous mathematical foundation for the corresponding iterative saddle point search algorithms. Both linear local asymptotic stability analysis and optimal error reduction (convergence) rates are presented and further confirmed by numerical experiments. Global convergence and nonlinear asymptotic stability are also illustrated for some simpler systems. Applications of the SDD in both finiteand infinite-dimensional energy spaces are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained shrinking dimer dynamics for saddle point search with constraints

In this paper, we study the constrained shrinking dimer dynamics (CSDD) which leads to numerical procedures for locating saddle points (transition states) associated with an energy functional defined on a constrained manifold. We focus on the most generic case corresponding to a constrained stationary point where the projected Hessian of the energy onto the tangent hyperplane of the constrained...

متن کامل

Finding Critical Nuclei in Phase Transformations by Shrinking Dimer Dynamics and its Variants

We investigate the critical nuclei morphology in phase transformation by combining two effective ingredients, with the first being the phase field modeling of the relevant energetics which has been a popular approach for phase transitions and the second being shrinking dimer dynamics and its variants for computing saddle points and transition states. In particular, the newly formulated generali...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

A climbing string method for saddle point search.

The string method originally proposed for the computation of minimum energy paths (MEPs) is modified to find saddle points around a given minimum on a potential energy landscape using the location of this minimum as only input. In the modified method the string is evolved by gradient flow in path space, with one of its end points fixed at the minimum and the other end point (the climbing image)...

متن کامل

Basin constrained κ-dimer method for saddle point finding.

Within the harmonic approximation to transition state theory, the rate of escape from a reactant is calculated from local information at saddle points on the boundary of the state. The dimer minimum-mode following method can be used to find such saddle points. But as we show, dimer searches that are initiated from a reactant state of interest can converge to saddles that are not on the boundary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012